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Li-ion Cells:

Source: Introduction to Battery Management Systems Coursera

• Type of rechargeable cells
• Movement of Li-ions in the battery
• Electrolyte is generally a lithium salt (LiPF6 is 

commonly used in an organic carbonate solution)
• During charging/discharging, Li+ ‘intercalates’

• Li-ion batteries have better specific energy 
(energy per unit mass) and energy density 
(energy per unit volume)

• Since intercalation is a ‘gentle’ process, Li-
ion batteries have a long lifetimes

CathodeAnode

https://www.coursera.org/learn/battery-management-systems?


Screening billions of materials?

• Need to predict better materials with higher Li+ ion conductivity

• ML approach might help as search space is exponentially large

• ML Procedure: 

gather data -> encode crystal structure/composition -> train -> test -> predict

• Hurdles: (1) good and big enough dataset (2) good material descriptors



Overview of the Paper

• The authors point out that while ML models are becoming 
increasingly popular and effective in predicting material properties, 
most of them require structural or other property information in 
order to make material fingerprints

• The issue with structural or other property (like bandgap) based 
descriptors is that we don’t have the information beforehand

• Authors proposed a transfer learning approach based on elemental 
descriptors which the material is composed of alleviating the need for 
knowing the structure for screening



Training on expt. dataset of 40 materials

Used 2 types of descriptors:
1. Structural (resulting ML model termed as sML)
2. Elemental (resulting ML model termed as eML)

Descriptors used for 
1. sML: avg. no. of Li neighbours, avg. sublattice bond 

ionicity, avg. anion-anion coordination number, 
shortest Li-ion distance, avg. shortest Li-Li distance

2. eML: atomic number, group, period, 
electronegativity, electron affinity, boiling/melting 
temperature, density, ionization energy  

ML Model
• Linear SVM classifier, to classify whether the 

compound has high Li conductivity or not
• Criterion of 10−4 𝑆 × 𝑐𝑚−1 set, to create high/low 

labels in the dataset. The data contained 11(29) 
high(low) conductivity compounds

• Leave-one-out cross validation technique used for 
assessing accuracy

By varying the no. of descriptors (by examining every 
possible subset), the highest validation accuracy by 
eML was 97.5% with 7 descriptors whereas that of 
sML was 90% with 5 descriptors

Random guessing accuracy means randomly picking 11 out 
the 40 to be high and rest, low conductivity

Ref: Cubuk et. al. J. Chem. Phys. 150, 214701 (2019)



Generalization Issue

The accuracy of eML looks promising, but the model doesn’t generalize well

• Of the 12,716 Li-containing compounds in the MP Database, the authors 
randomly selected 21 and performed DFT calculations to obtain Li-conductivity 
and create a DFT-test dataset to assess the performance of eML and sML

• When the trained eML model was used to predict conductivity class of this DFT-
dataset, it’s accuracy was just 52.4% (guessed 11 labels correctly out of 21)

• On the other hand, the sML model predicted with a 90.5% accuracy (guessed 19 
labels correctly out of 21)

While eML descriptors are generic and do not require structure info. (which is 
desired for ML descriptors), it is inferior to the sML descriptors which are carefully 
picked from physically inspired models reported over several decades of literature

Ref: Cubuk et. al. J. Chem. Phys. 150, 214701 (2019)

Generic descriptors work well in NLP where there are 104 − 106 training datapoints, however, scenario is different for materials



Transfer Learning Approach

Since the sML gives better accuracy on the DFT-test dataset, the authors leverage it’s 
generalization ability to train the eML model 

Train the sML on the exp-
dataset of 40 compounds 

Procedure:

Using this trained sML, make predictions 
on the 12,716 MP compounds 

Using the predictions made by 
sML as labels, train the eML

• The resulting transfer learning model is termed esML as it uses elemental descriptors 
and is trained on the labels created by sML model. It reproduces predictions of sML
with 93% 10-fold cross validation accuracy and 92% hold-out test set accuracy 

• The esML achieves an accuracy of 87.5% on experimental dataset of 40 compounds. 
Furthermore, it’s accuracy on the DFT-dataset of 21 compounds is 86.4%, a significant 
improvement over the eML which gave an accuracy of just 54.5%

Ref: Cubuk et. al. J. Chem. Phys. 150, 214701 (2019)



Screening 20 × 109 candidates
• Screened ternary and quaternary material compositions with 1% increments in 

composition for each element

• Found that 60% of these materials are good Li-conductors

• Added few screening criteria

Criteria:
1. Weighted sum of oxidation states of all elements add up to 0. Only 10% of original set satisfy this 

constraint. Furthermore, only 7% of the 10% are predicted to be good Li-conductors.
2. Additional weight and cost constraints are added. Next, search is restricted to 1st 4 rows of the 

periodic table
3. Finally, for easy synthesizability, stability, electronically insulating and large electrochemical window, 

search is restricted to oxides

Ref: Cubuk et. al. J. Chem. Phys. 150, 214701 (2019)



atom2vec-esML
An attempt to utilize ML to learn elemental descriptors instead of us picking out physical properties 
like electronegativity, electron affinity, density, boiling/melting temperature, etc.  

1. Select the no. of descriptors you want for each element 𝑫𝒂𝒕𝒐𝒎

2. Select a reduction technique for these descriptors (for eg. Averaging, 
standard deviation, min/max, etc.) 

Ref: Cubuk et. al. J. Chem. Phys. 150, 214701 (2019)

Steps:

1. Create a vector using atomic 
compositions of the compound

2. This composition vector is 
replication along the column 
dimension 𝐷𝑎𝑡𝑜𝑚 times and 
multiplied with the embedding 
matrix

3. Each row of the embedding matrix is 
the atomic vector for the 
corresponding element 

Training:

1. Apply the decided reduction techniques on the columns of the embedded material 
representation

2. The resultant 𝐷𝑎𝑡𝑜𝑚𝑠 × 𝑁𝑅 vector is passed through 2 hidden layers to make property prediction
3. Backpropagation and SGD is used to learn the weights and elements of the embedding matrix



Performance of atom2vec-esML

Ref: Cubuk et. al. J. Chem. Phys. 150, 214701 (2019)

• Atom2vec-esML is able to predict the labels created by sML on the MP 
dataset of 12,716 compounds

• The validation accuracy reaches a plateau after 3 descriptors which 
means it has a more compact representation than the eML

• As a sanity check, the authors verified that the high Li-conductors 
identified from the screening processes are correctly classified by the 
atom2vec-esML

• To look at the contribution of each atom’s contribution to 
material’s predicted conductivity, the authors look at the 
magnitude of dot product of each atomic vector and the direction 
perpendicular to the classification hyperplane

• Obtained this dot-product for 1000 sets of learned features 
obtained with different sets of random initializations

• A positive dot product implies higher contribution, from the figure, 
we can see Li has highest contribution. Among anions S and P have 
highest contributions



Summary

Ref: Cubuk et. al. J. Chem. Phys. 150, 214701 (2019)



Discussions?


